Each panel displays the fragment ion spectrum for each fragmentation type. The color indicates the file origin.
score1 experimental fragments matched ⁄ theoretically possible.
score2 experimental fragments matched ⁄ all fragments in spectrum.
score3 experimental matched fragment intensities ⁄ master.intensity.
Download ScoresContact us
by E-mail [Andrea Brunner](mailto: Andrea.Brunner@kwrwater.nl?SUBJECT=-> help uvpd shiny) or [Christian Panse](mailto:cp@fgcz.ethz.ch?SUBJECT=-> help uvpd shiny)
Bug Reports
https://github.com/cpanse/uvpd/issues
Run the application
Install the R package
pkgs <- c('shiny', 'ggplot2')
pkgs <- pkgs[(!pkgs %in% unique(installed.packages()[,'Package']))]
if(length(pkgs) > 0){install.packages(pkgs)}
install.packages('http://fgcz-ms.uzh.ch/~cpanse/UVPD/uvpd_0.0.16.tar.gz',repos=NULL)
run the shiny application from your computer
shiny::runApp(file.path(system.file(package = 'uvpd'), 'shiny/stackedbarchart'))
code snipets
stacked bar chart - download the selected data and run
DF <- read.table("Triadimenol.csv", sep=',', header=TRUE)
library(ggplot2)
gg_color_hue <- function(n) {
hues = seq(15, 375, length = n + 1)
hcl(h = hues, l = 65, c = 100)[1:n]
}
cm <- gg_color_hue(n)
if (getFormulaPC() %in% as.character(DF$formula)){
cm <- c(gg_color_hue(n-1),'grey')
}
gp <- ggplot(data = DF,
aes(x = factor(fragmode, levels = sort(unique(DF$fragmode))),
y = log(intensity, 10),
fill=reorder(formula, mZ))) +
geom_bar(stat="identity", position = position_stack(reverse = FALSE)) +
scale_x_discrete(drop=FALSE) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
guides(fill=guide_legend(title="formula")) +
xlab("") +
scale_fill_manual(values = cm) +
facet_wrap(~ compound * mode, scales="free", drop=FALSE)
md5 checksums of input files
https://doi.org/10.5281/zenodo.4001653
421dcd9bfd60d5ec94f2eaf30a5b28fe CastellonStds_pos_HCD_20_35_60.raw
c7b3769271afa562b31cc6c4a65e9049 CastellonStds_pos_UVPD_100_150.raw
e8342d31941964ae86c83a0b09922ea8 CastellonStds_pos_UVPD_200_250.raw
9f8d081c4cf6b59bbd265cf3de6c821f CastellonStds_pos_UVPD_25_800.raw
747a1e3c14effc6f4b4b8c22e982bdda CastellonStds_pos_UVPD_400_500.raw
fff6852bf964c67fcb181ce6d7835691 CastellonStds_pos_UVPD_50_300.raw
4fd80c97b52bf548875a9aeffae66083 DBP_neg_HCD_20_35_60.raw
c22724a557de3813626b419a2eb7f1be DBP_neg_UVPD_100_150.raw
b8f913378eb46b845a18f7236cbe35e1 DBP_neg_UVPD_200_250.raw
bcfad7bdd36f5cf22becc8b97251e51c DBP_neg_UVPD_25_800.raw
ae9edc64893afc2ef6aefde5a1f60d01 DBP_neg_UVPD_400_500.raw
5de71cbbaf799d423ad34e15924c2626 DBP_neg_UVPD_50_300.raw
6736bfac31233a13ee151b8cb8579af6 KWRstds_HCD_20_35_60_met1.raw
ef73b5b9fd0bbe5a2b11df3023e0d6b6 KWRstds_UVPD_100_150_met1.raw
06c3cf282a41fbd6f1ea5cb24e044f48 KWRstds_UVPD_100_150_met2.raw
8e28ce2fbc6594df647fd48e31ba026c KWRstds_UVPD_200_250_met1.raw
b9dd45a4496698cdfa4d93cede6605fa KWRstds_UVPD_200_250_met2.raw
83a04a7e6216ca3f98e50b34cb1e95c1 KWRstds_UVPD_25_800_met1.raw
6fe92ed1b8243d302108148d88fa591b KWRstds_UVPD_25_800_met2.raw
3248cbb1bb1e444cece64f5c8bf35a17 KWRstds_UVPD_400_500_met1.raw
66b589fd55d80273cd2527079283ab02 KWRstds_UVPD_400_500_met2.raw
00d3caedfd61cc05b1df53549a2ef3f0 KWRstds_UVPD_50_300_met1.raw
16fc1617015cb7d57970dccb569222b1 KWRstds_UVPD_50_300_met2.raw
22cbc525114ac7c121f28fac0f86e15d stds_pos_neg_MS_highconc_HCD_mz100-800.raw
56849e8763d0e1c250b46c4a4434235a stds_pos_neg_MS_highconc_UVPD_100_150_mz50.raw
dcf62100663404a354eb546127f7eaaa stds_pos_neg_MS_highconc_UVPD_200_250_mz50.raw
c469eee791cbf9919a2f87d875299ca5 stds_pos_neg_MS_highconc_UVPD_25_800_mz50.raw
81ce2b575dc4bf9b60c0701ba083463a stds_pos_neg_MS_highconc_UVPD_400_500_mz50.raw
94e4852ce183317288d2dc537ad57655 stds_pos_neg_MS_highconc_UVPD_50_300_mz50.raw
Useful bookmarks
-
Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program
-
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
-
A new metaphor for projection-based visual analysis and data exploration Proc. SPIE 2007 | conference-paper DOI: 10.1117/12.697879